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Abstract

An analytical solution of the Boussinesq equations for the motion of a viscous sta-
bly stratified fluid driven by a surface thermal forcing with large horizontal gradients
(step changes) is obtained. The solution can be used to verify that computer codes for
Boussinesq fluid system simulations are free of errors in formulation of wall boundary5

conditions, and to evaluate the relative performances of competing numerical algo-
rithms. Because the solution pertains to flows driven by a surface thermal forcing, one
of its main applications may be for testing the no-slip, impermeable wall boundary con-
ditions for the pressure Poisson equation. Examples of such tests are presented.

1 Introduction10

Thermal disturbances associated with variations in underlying surface properties can
drive local circulations in the atmospheric boundary layer (Atkinson, 1981; Briggs,
1988; Hadfield et al., 1991; Segal and Arritt, 1992; Simpson, 1994; Mahrt et al., 1994;
Pielke, 2001; McPherson, 2007; Kang et al., 2012) and affect the development of the
convective boundary layer (Patton et al., 2005; van Heerwaarden et al., 2014). Com-15

putational fluid dynamics (CFD) codes for modeling such flows commonly solve the
Boussinesq equations of motion and thermal energy for a viscous/diffusive stably strati-
fied fluid. In this paper we present an analytical solution of the Boussinesq equations for
flows driven by a surface thermal forcing with large gradients (step changes) in the hor-
izontal. The solution can be used to verify that CFD codes for Boussinesq fluid system20

simulations are free of errors, and to evaluate the relative performances of competing
numerical algorithms. Such verification procedures are important in the development
of CFD models designed for research, operational, and classroom applications.

We solve the linearized Navier–Stokes and thermal energy equations analytically for
the case where the surface buoyancy varies laterally as a square wave (Fig. 1). Atten-25

tion is restricted to the steady state. No boundary-layer approximations are made; the
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solution is non-hydrostatic, and both horizontal and vertical derivatives are included in
the viscous stress and thermal diffusion terms. The solution is similar to that of Ax-
elsen et al. (2010) for katabatic flow above a cold strip, but is easier to evaluate (no
slope present) and applies to the more general scenario where the viscosity and dif-
fusivity coefficients can differ. The linearized Navier–Stokes equations apply to a class5

of very low Reynolds number motions known as creeping flows. Such flows appear
in studies of lubrication, locomotion of microorganisms, lava flow, and flow in porous
media. Of course, for the task at hand, if our linear solution is to serve as a benchmark
for a nonlinear numerical model solution, it is essential that the parameter space be
restricted to values for which the model’s nonlinear terms are negligible.10

Because the solution pertains to flows driven by a surface thermal forcing, one of
its main applications may be as a test for surface boundary conditions in the pres-
sure Poisson equation. In models of atmospheric boundary layer flows, the buoyancy
is a major contributor to the forcing term in the Poisson equation and also appears in
the associated surface boundary condition. The pressure boundary condition on a solid15

boundary in incompressible (Boussinesq) fluid flows is an important and complex is-
sue that has long been fraught with technical difficulties and controversies (Strikwerda,
1984; Orszag et al., 1986; Gresho and Sani, 1987; Gresho, 1990; Temam, 1991; Hen-
shaw, 1994; Petersson, 2001; Sani et al., 2006; Rempfer, 2006; Guermond et al., 2006;
Nordström et al., 2007; Shirokoff and Rosales, 2011; Hosseini and Feng, 2011; Vre-20

man, 2014). Typical fractional-step solution methodologies and associated pressure (or
pseudo-pressure) boundary-condition implementations are often verified using various
prototypic flows such as Poiseuille flows, lid-driven cavity flows, flows over cylinders or
bluff bodies, viscously decaying vortices, and dam-break flows. We are unaware of ver-
ification tests in which flows were driven by a heterogeneous surface buoyancy forcing.25

Our solution is designed to fill this gap.
The analytical solution is derived in Sect. 2. In Sect. 3, this solution is compared

to numerically simulated fields in a steady state. Two versions of a numerical code
are run: a version in which the correct surface pressure boundary condition is applied,
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and a version in which the pressure condition is mis-specified. A summary follows in
Sect. 4.

2 Analytical solution

We derive the solution for steady flow over an underlying surface along which the
buoyancy varies laterally as a single harmonic function. This single-harmonic solution5

is then used as a building block in a Fourier representation of the square-wave solution.

2.1 Governing equations

Consider the flow of a viscous stably stratified fluid that fills the semi-infinite domain
above a solid horizontal surface (placed at z = 0). This surface undergoes a steady
thermal forcing that varies periodically in the right-hand Cartesian x direction, but is10

independent of the y direction. The two-dimensional (x, z) flow fields are periodic in x,
and satisfy the linearized (assuming the disturbance is of small amplitude) Boussinesq
equations,

0 = −∂Π
∂x

+ ν∇2u, (1)

0 = −∂Π
∂z

+b+ ν∇2w, (2)15

0 = −N2w +α∇2b, (3)

∂u
∂x

+
∂w
∂z

= 0. (4)

Here u and w are the horizontal (x) and vertical (z) velocity components, Π ≡ [p−
pe(z)]/ρw is the kinematic pressure perturbation [p is pressure, pe(z) is pressure in
a hydrostatic environmental state in which the density profile is ρe(z), ρw is a constant20

reference density, say, ρe(0)], and b ≡ −g[ρ−ρe(z)]/ρw is the buoyancy, where ρ is the
2850
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actual density, and g is the acceleration due to gravity. The Brunt–Väisälä frequency

N ≡
√
− (g/ρw )dρe/dz, kinematic viscosity ν, and thermal diffusivity α are taken con-

stant.
We obtain our solution using a standard vorticity/streamfunction formulation. Cross-

differentiating Eqs. (1) and (2) yields the vorticity equation,5

0 = −∂b
∂x

+ ν∇2η, (5)

where η ≡ ∂u/∂z−∂w/∂x is the vorticity. Eliminating b from Eqs. (3) and (5) yields

∇4η =
N2

να
∂w
∂x

. (6)

Introducing a streamfunction ψ defined through

u = ∂ψ/∂z, w = −∂ψ/∂x, (7)10

guarantees that Eq. (4) is satisfied, and transforms Eq. (6) into a single equation for ψ ,

∇6ψ +
N2

να
∂2ψ

∂x2
= 0. (8)

The dependent variables are assumed to vanish far above the surface (z→∞). On
the surface we apply no-slip (u = 0) and impermeability (w = 0) conditions, and spec-
ify a periodic (in x) buoyancy distribution. As we will now see, restricting the depen-15

dent variables to steady periodic forms that vanish as z→∞ also restricts accept-
able distributions of the surface buoyancy. Averaging Eq. (3) over one period (using
w = −∂ψ/∂x) yields d2b/dz2 = 0, which integrates to b = A+Bz (b is the average of
b; A and B are constants). Taking b→ 0 as z→∞, implies that b→ 0 as z→∞, in
which case A = B = 0, and b(z) = 0. In particular, at the surface, b(0) = 0. If a surface20

distribution b(x,0) violates this condition, the ground acts as a net heat source/sink. In
an unsteady model, such a source/sink would force a continually upward-developing
disturbance, and a steady state could never be attained.
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2.2 Single-harmonic forcing

For a surface buoyancy of the form b(x,0) ∝ sinkx, Eq. (3) indicates that ψ is of the
form

ψ = A(z)coskx. (9)

Application of Eq. (9) in Eq. (8) yields5 (
d2

dz2
−k2

)3

A− N
2k2

να
A = 0, (10)

which has solutions of the form A ∝ eMz for M satisfying

(M2 −k2)3 =
N2k2

να
. (11)

Taking the one-third power of Eq. (11) yields a useful intermediate result:

M2 −k2 =
N2/3k2/3

ν1/3α1/3
e2nπi/3, (12)10

where n is an integer. Rearranging Eq. (12) and taking the square root yields,

M = ±

√
k2 +

N2/3k2/3

ν1/3α1/3
e2nπi/3. (13)

Equation (13) furnishes six roots, two for each of n = 0, 1, 2. To ensure that A(z)→ 0
as z→∞, we reject the roots with a positive real part. With the radicand of Eq. (13)
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expressed in polar form, the physically acceptable roots are

M0 = −

√
k2 +

N2/3k2/3

ν1/3α1/3
, (n = 0), (14a)

M1 = −r1/2eiφ/2, (n = 1), (14b)

M2 = −r1/2e−iφ/2, (n = 2), (14c)

where the subscript on M denotes the associated value of n, and r and φ are defined5

by

r ≡

√√√√[k2 +
N2/3k2/3

ν1/3α1/3
cos
(

2π
3

)]2

+

[
N2/3k2/3

ν1/3α1/3
sin
(

2π
3

)]2

, (15)

cosφ =
1
r

[
k2 +

N2/3k2/3

ν1/3α1/3
cos
(

2π
3

)]
, sinφ =

1
r

(
N2/3k2/3

ν1/3α1/3

)
sin
(

2π
3

)
> 0. (16)

When solving Eq. (16) for φ, care must be taken when evaluating arcsin or arccos
functions that φ appears in the correct quadrant (φ should be in quadrant I or II so10

φ/2 should always be in quadrant I). Also note from Eqs. (14b) and (14c) that M2 is
the complex conjugate of M1 (M2 =M

∗
1), a fact that will often be used below.

With the general solution for ψ written as

ψ = (BeM0z +CeM1z +DeM2z)coskx, (17)

where B, C, and D are constants, the vorticity becomes,15

η =
[
B(M2

0 −k
2)eM0z +C(M2

1 −k
2)eM1z +D(M2

2 −k
2)eM2z

]
coskx, (18)

and the buoyancy follows from Eq. (3) as

b =
kN2

α

(
B

M2
0 −k2

eM0z +
C

M2
1 −k2

eM1z +
D

M2
2 −k2

eM2z

)
sinkx+bh, (19)
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where ∇2bh = 0. In view of Eq. (12), Eq. (19) becomes

b =
k1/3ν1/3N4/3

α2/3
(BeM0z +e−2πi/3CeM1z +e−4πi/3DeM2z)sinkx+bh. (20)

Applying Eqs. (18) and (20) in Eq. (5) yields an equation for ∂bh/∂x, which upon use
of Eq. (12) and M2 =M

∗
1 reduces to ∂bh/∂x = 0. So bh is, at most, a function of z.

Since ∇2bh = 0, bh is, at most, a linear function of z, and since b should vanish as5

z→∞, that linear function must be 0. Thus, bh = 0.
The pressure follows from Eqs. (1) and (12) as

Π=
ν2/3N2/3

k1/3α1/3
(BM0e

M0z +CM1e
2πi/3eM1z +DM2e

4πi/3eM2z)sinkx+G(z), (21)

where G(z) is a function of integration. Applying Eq. (21) in Eq. (2), and using Eq. (11)
yields dG/dz = 0, so G is constant. For Π to vanish as z→∞, this constant must be10

zero.
The surface conditions determine B, C, and D. The surface buoyancy is

b(x,0) = b0 sinkx, (22)

where b0 is a constant forcing amplitude. Application of Eq. (20) in Eq. (22) yields

B+e−2πi/3C+e−4πi/3D =
b0α

2/3

k1/3ν1/3N4/3
. (23)15

The impermeability and no-slip conditions yield

B+C+D = 0, (24)

BM0 +CM1 +DM2 = 0. (25)
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Straightforward but lengthy manipulations yield the solution of Eqs. (23)–(25):

B = −
(

b0α
2/3

√
3k1/3ν1/3N4/3

)
2r1/2 sin(φ/2)

M0 +2r1/2 cos(π/3+φ/2)
, (26)

C = −i
(

b0α
2/3

√
3k1/3ν1/3N4/3

)
M2 −M0

M0 +2r1/2 cos(π/3+φ/2)
, (27)

D = i

(
b0α

2/3

√
3k1/3ν1/3N4/3

)
M1 −M0

M0 +2r1/2 cos(π/3+φ/2)
. (28)

Applying Eqs. (26)–(28) in Eqs. (17), (20), and (18), with Eq. (12) used in the latter5

equation, and noting that B is real, while D = C∗ (since M2 =M
∗
1), we obtain

b =
2b0√

3

e−Zc [µcos(Zs +π/6)+ cos(Zs +π/6+φ/2)]−eM0z sin(φ/2)

µ+2cos(π/3+φ/2)
sinkx, (29)

ψ =
2b0α

2/3

√
3k1/3ν1/3N4/3

e−Zc [µsinZs + sin(Zs +φ/2)]−eM0z sin(φ/2)

µ+2cos(π/3+φ/2)
coskx, (30)

where

Zs ≡ zr1/2 sin(φ/2), Zc ≡ zr1/2 cos(φ/2), µ ≡M0/r
1/2. (31)10

The vertical velocity follows from Eq. (30) as

w =
2b0α

2/3k2/3

√
3ν1/3N4/3

e−Zc [µsinZs + sin(Zs +φ/2)]−eM0z sin(φ/2)

µ+2cos(π/3+φ/2)
sinkx. (32)
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2.3 Piecewise constant (square wave) forcing

Next, consider the case where the surface buoyancy varies horizontally as a square
wave, with a distribution over one period L given by,

b(x,0) =

{
bmax, 0 < x < L/2,

−bmax, L/2 < x < L.
(33)

Such a distribution can be expressed as the Fourier series,5

b(x,0) =
∞∑
n=1

bn sin
(nπx
L

)
, (34)

bn =
2
L

L∫
0

b(x,0)sin
(nπx
L

)
. (35)

Application of Eq. (33) in Eq. (35) yields

bn =
2bmax

nπ
[
1−2cos(nπ/2)+ cos(nπ)

]
. (36)

The solutions for b, ψ , and w can then be written as summations over the single-10

harmonic solutions Eqs. (29), (30), and (32), with k related to n by

k =
nπ
L

, (37)
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and with b0 replaced by bn:

b =
2
√

3

∞∑
n=1

bn
e−Zc [µcos(Zs +π/6)+ cos(Zs +π/6+φ/2)]−eM0z sin(φ/2)

µ+2cos(π/3+φ/2)

· sin
(nπx
L

)
, (38)

ψ =
2α2/3

√
3k1/3ν1/3N4/3

∞∑
n=1

bn
e−Zc [µsinZs + sin(Zs +φ/2)]−eM0z sin(φ/2)

µ+2cos(π/3+φ/2)

· cos
(nπx
L

)
, (39)5

w =
2α2/3k2/3

√
3ν1/3N4/3

∞∑
n=1

bn
e−Zc [µsinZs + sin(Zs +φ/2)]−eM0z sin(φ/2)

µ+2cos(π/3+φ/2)
sin
(nπx
L

)
. (40)

The derivation of the u field requires considerable effort and is not pursued. Instead,
we obtain a proxy of the analytical solution for u by taking centered finite differences of
Eq. (39) with respect to z.

3 Verification tests10

A solution of the linearized equations may be used to verify a nonlinear code if the
nonlinear terms are sufficiently small. Unfortunately, a priori estimates of such terms
expressed, for example, through a Reynolds number, are not straightforward since the
relevant velocity and length scales in our problem are only evident after a solution has
been obtained. We thus seek an appropriate set of test parameters through trial and15

error, guided by a posteriori linear solution estimates of the terms u · ∇b and u · ∇η
present in nonlinear versions of Eqs. (3) and (5), respectively. Specifically, for any com-
puted candidate solution, we formed the ratios of the largest values of those nonlinear
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terms to the largest values of the corresponding linear terms, that is, the terms actu-
ally present in Eqs. (3) and (5). We need only consider one such linear term per ratio
since Eqs. (3) and (5) are comprised of two terms of equal magnitude. A solution was
deemed to be sufficiently linear if

Rη ≡
max |u · ∇η|

max
∣∣∂b/∂x∣∣ < ε, and Rb ≡

max |u · ∇b|
max |α∇2b|

< ε, (41)5

where ε (� 1) is a prescribed threshold. The suitability of this approach was confirmed
by the very close agreement between the analytical solutions and the numerical solu-
tions obtained with the correct surface pressure condition.

The numerical model employed in our tests is a variant of a direct numerical sim-
ulation (DNS) code used in the boundary-layer and slope-flow studies of Fedorovich10

et al. (2001), Fedorovich and Shapiro (2009a, b), and Shapiro and Fedorovich (2013,
2014). The model solves the Boussinesq governing equations on an Arakawa C grid.
Although designed for three-dimensional simulations, the model was run in a two-
dimensional (x, z) mode. The overall solution procedure is patterned on a fractional
step method proposed by Chorin (1968). In our version, the prognostic equations are15

integrated using a filtered leapfrog scheme with explicit treatment of the viscous term.
The pressure is diagnosed from a Poisson equation, which is solved using a fast Fourier
transform technique in horizontal planes, and a tridiagonal matrix inversion in the verti-
cal. The surface condition on pressure is the inhomogeneous Neumann condition that
arises from projecting the vertical equation of motion into the vertical, and imposing the20

impermeability condition (Vreman, 2014; also see our Appendix). We also run a ver-
sion of the code in which the surface pressure condition is mis-specified as a homoge-
neous Neumann condition. We hasten to add, however, that our implementation of the
homogeneous condition may be quite different from implementations described in the
literature. We elaborate on these technical differences and review general aspects of25

the problem of surface pressure specification in the Appendix.
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The analytical solution was evaluated on an un-staggered (x, z) grid extending over
one period of the square wave (x = 0 to x = L). The series were truncated at 50 000
terms. The governing parameters were adjusted so that the linearity criteria were sat-
isfied in comparisons with ε = 5×10−3.

In the first test, we set ν = α = 0.001m2 s−1, N = 0.02s−1, L = 5.12m, and bmax =5

1×10−5 ms−2. For the analytical solution A-1, the (x, z) grid consisted of 513×1025
points with grid spacings ∆x = ∆z = 0.01m. The linearity criteria Eq. (41) were satisfied
with Rη ∼= 8.2×10−5 and Rb ∼= 2.8×10−3. The analytical b and w fields shown in Fig. 2
depict a broad zone of ascent above the warm surface and a compensating zone of
descent over the cold surface, roughly for z < 1.8m. In the upper part of these zones10

(roughly 0.9m < z < 1.8m), adiabatic expansion/compression has reversed the senses
of the buoyancy fields. Surprisingly, the numerical fields in the inhomogeneous INC-1
and homogeneous HNC-1 cases are very similar to each other and to the A-1 fields.
The u fields from A-1, INC-1, and HNC-1 shown in Fig. 3 are visually indistinguishable
from one another.15

To understand why the INC-1 and HNC-1 simulations are so similar, and to identify
simulation parameters that might evince more substantial differences, we consider the
idealized problem in which a specified buoyancy b = b0e

−γz sinkx (γ = h−1, where h is
the e-folding depth scale) is the only forcing term in the Poisson equation ∇2Π= ∂b/∂z
with Neumann surface condition ∂Π/∂z

∣∣
0 = b(x,0). This idealized problem is solved20

as

Π∗
INC

=
b0

γ2 −k2

(
ke−kz −γe−γz

)
sinkx. (42)

The corresponding solution obtained with the homogeneous Neumann condition,
∂Π/∂z

∣∣
0 = 0, is

Π∗
HNC

=
b0

γ2 −k2

(
γ2

k
e−kz −γe−γz

)
sinkx. (43)25
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The relative error (RE) in the vertical pressure gradient force associated with Eqs. (42)
and (43), defined as the local absolute error in that force divided by the local buoyancy,
is calculated as

RE ≡

∣∣∣∣∣∂Π
∗
INC/∂z−∂Π

∗
HNC/∂z

b

∣∣∣∣∣ = e(a−1)kz, (44)

where a ≡ γ/k. Written in terms of the depth scale h and wavelength λ = 2π/k, a5

can be interpreted as an aspect ratio characterizing the width to depth scales of the
disturbance, a = λ/(2πh) ∝ λγ. From Eq. (44) we see that RE decreases exponentially
with z for disturbances characterized by small aspect ratios, a < 1 (which we refer to as
deep disturbances) and increases exponentially with z for disturbances characterized
by large aspect ratios, a > 1 (which we refer to as shallow disturbances). The buoyancy10

in Fig. 2 is suggestive of a < 1, which indicates that the first test could be classified as
a deep (error-forgiving) simulation.

The preceding analysis suggests that simulations with shallow thermal disturbances
(a > 1) might yield large differences between cases with inhomogeneous and homo-
geneous Neumann conditions. There did not appear to be a straightforward way to15

increase the effective a by systematically varying the parameters (e.g., increasing L
tended to increase the effective h), but a set of suitable parameters were identified
through trial and error and were used as the basis for the second test case.

In the second test, we set ν = α = 0.0001m2 s−1, N = 0.2s−1, L = 10.24m, and
bmax = 5×10−6 ms−2. The analytical solution A-2 was generated with 2049×513 points20

with grid spacings of ∆x = ∆z = 0.005m. The linearity criteria were satisfied with
Rη ∼= 4.8×10−5 and Rb ∼= 3.6×10−3. In contrast to the counter-rotating convection rolls
seen in the first test, the analytical b and w fields shown in Fig. 4 depict narrow up-
draft/downdraft pairs straddling the buoyancy discontinuities. Between the narrow up-
drafts is a broad region of relatively weak ascent. The w and b fields above the cold25

surface are mirror images of the fields above the warm surface. Note the change in
the scales of the x and (especially) the z axes between Figs. 4 and 2: the low-level
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thermal disturbance in the second test is much shallower than the disturbance in the
first test (and is suggestive of a > 1). In this second test case we find dramatic differ-
ences between the inhomogeneous INC-2 and homogeneous HNC-2 cases. Specif-
ically, while the INC-2 and A-2 fields are in excellent agreement, the HNC-2 fields
showed no signs of even approaching a steady state. Long after the INC-2 simula-5

tion had reached a steady state, the HNC-2 fields continued to amplify and develop
asymmetric structures associated with flow nonlinearities. The very close agreement
between the A-2 solution and the steady state in the INC-2 simulation is shown for the
u field in Fig. 5. The u field in the disastrous HNC-2 simulation, at a time when a steady
state had already been attained in the INC-2 simulation, is shown in Fig. 6.10

4 Summary

The linearized Boussinesq equations for the motion of a viscous stably stratified fluid
are solved analytically for a surface buoyancy that varies laterally as a square wave.
The solution describes two-dimensional laminar convective structures such as thermal
convective rolls and updraft/downdraft pairs. The main applications of the solution may15

be in code verification and the evaluation of different implementations of the surface
pressure condition for the pressure Poisson equation. Tests have been conducted for
cases where the aspect ratios of the thermal disturbance have been large and small.
With attention restricted to disturbances of sufficiently small amplitude, the linear so-
lution and numerically simulated fields with the inhomogeneous Neumann condition20

for pressure (which is appropriate in the context of the particular fractional step proce-
dure adopted in our DNS code) have been found to be in excellent agreement for both
tests. However, in tests with a mis-specified Neumann condition, an excellent agree-
ment with the analytical solution has been found only for the deep (small aspect ratio)
disturbance case; errors in the shallow (large aspect ratio) disturbance case have been25

catastrophic.
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Appendix A: Comment on the pressure condition at a lower solid surface

Consider a Boussinesq system with equation of motion,

∂u
∂t

= −∇Π+ ν∇2u+F. (A1)

Here u is the velocity vector, Π is a kinematic pressure perturbation, ν is the kinematic
viscosity coefficient, and F is the sum of nonlinear acceleration and buoyancy terms.5

Applying the incompressibility condition,

∇ ·u = 0, (A2)

in the equation that results from taking the divergence of Eq. (A1) (e.g., Orszag et al.,
1986) yields the Poisson equation,

∇2Π= ∇ ·F. (A3a)10

Although Eqs. (A1) and (A2) imply Eq. (A3a), the reverse statement is not generally
true. Indeed, eliminating Π from between Eq. (A3a) and the equation arising from taking
the divergence of Eq. (A1) yields the diffusion equation ∂δ/∂t = ν∇2δ for the velocity
divergence δ ≡ ∇ ·u, whose solution is Eq. (A2) only if ∇ ·u is zero initially and on all
boundaries (Orszag et al., 1986; Gresho and Sani, 1987).15

The same steps leading to Eq. (A3a) also lead to an alternative Poisson equation,

∇2Π= ∇ ·
(
ν∇2u+F

)
. (A3b)

Although ∇ · ν∇2
u was omitted in Eq. (A3a) [this term is zero if Eq. (A2) is satisfied],

Gresho and Sani (1987) advocate its retention: “If you include it, you don’t need it; if
you don’t include it, you need it.” Equation (A3b) is the form adopted in our numerical20

code.
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Evaluating the vertical component of Eq. (A1) on the surface, where the imperme-
ability condition applies, yields the inhomogeneous Neumann condition,

∂Π
∂z

∣∣∣∣
0
= ν

∂2w
∂z2

∣∣∣∣∣
0

+ Fz |0, (A4)

where w ≡ k ·u, Fz ≡ k ·F, k is the upward unit vector, and ()|0 is a surface value. It
has been argued that Eq. (A4), by itself, is not a proper boundary condition because it5

does not provide new information (as it is not independent of the governing equations)
and does not enforce the incompressibility condition Eq. (A2) at the boundary (Strikw-
erda, 1984; Henshaw, 1994; Sani et al., 2006). However, as pointed out by Henshaw
(1994), many studies that impose Eq. (A4) (or a variant of it) also apply Eq. (A2) on the
boundary.10

In our numerical model, Eq. (A1) is integrated using a fractional step procedure with
explicit treatment of the viscous term. First, a provisional velocity field ũ that does not
satisfy Eq. (A2) is obtained by integrating a discretized form of Eq. (A1) in which the
pressure gradient is omitted. The provisional velocity is equal to the velocity at the end
of the previous time step plus the sum of the forcing terms (nonlinear acceleration,15

buoyancy, and viscous stress) multiplied by the time step δt. With the forcing terms
explicitly evaluated, ũ is readily computed throughout the flow domain, including on the
surface, where, in surface-forced flows, the buoyancy will make a substantial contribu-
tion. In terms of ũ and its vertical component w̃, Eqs. (A3b) and (A4) become,

∇2Π=
∇ · ũ
δt

, (A5)20

∂Π
∂z

∣∣∣∣
0
− 1
δt
w̃ |0 = 0. (A6)

In the second step, a velocity field that does satisfy Eq. (A2) is obtained by solving
Eq. (A5), and then adding the pressure gradient force associated with this Π (multiplied
by δt) to ũ.
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In some explicit fractional step procedures (including the DNS code used in our
study), the problem of solving Eq. (A5) subject to Eq. (A6) with ũ|0 evaluated from
model data is replaced by what appears to be an entirely different (but is actually equiv-
alent) problem: solving Eq. (A5) subject to the homogeneous Neumann condition,

∂Π
∂z

∣∣∣∣
0
= 0, (A7)5

in concert with ũ|0 being set to 0, obviating the need to calculate ũ|0 from model data.
It can be shown that w̃ |0 and the discretized form of ∂Π/∂z

∣∣
0 appear in the discretized

form of Eq. (A5) valid half a grid point above the physical surface as ∂Π/∂z
∣∣

0− w̃ |0/δt,
that is, in the same combination as they appear in Eq. (A6). Thus, setting w̃ |0 and
∂Π/∂z

∣∣
0 to 0, is equivalent to implementing Eq. (A6) with the model-computed values10

of w̃ |0: the discretized form of Eq. (A5) near the surface is the same in either case.
Moreover, on the C grid, setting the tangential components ũ|0 and ṽ |0 to 0 only affects
the values of ũ and ṽ half a grid point beneath the physical boundary. These values do
not appear in the discretized form of Eq. (A5) at any z level, and thus have no bear-
ing on the solution. In essence, the errors associated with the conflation of the two15

physically unjustifiable specifications (homogeneous Neumann condition for pressure,
and ũ|0 = 0) cancel out. The homogeneous Neumann condition for pressure can be
the source of confusion if the context in which the condition is applied is not made
clear: it would be a correct condition if ũ|0 is set to zero (per the equivalence described
above), but it would be an incorrect condition if the explicit model-computed values of20

ũ|0 are used. In the experiments with the mis-specified condition described in Sect. 3,
the homogeneous condition is imposed in the latter context. Unfortunately, in many nu-
merical model descriptions, the nature of the surface pressure condition is left vague,
for example, by not indicating whether a Neumann condition is homogeneous or in-
homogeneous, or, if a homogeneous Neumann condition is indicated, not mentioning25

how ũ|0 is treated.
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Finally, we note that in fractional step procedures that treat the viscous term implic-
itly (e.g., Kim and Moin, 1985; Gresho, 1990; Armfield and Street, 2002; Guermond
et al., 2006, and many others), the homogeneous Neumann condition is often applied
as a surface condition for a Poisson equation, but it is again different from our imple-
mentation described in Sect. 3. In the implicit treatments, the provisional velocity is5

obtained as the solution of a boundary value problem ( ũ|0 should be specified; often
it is set to 0) in which the relevant Poisson equation resembles Eq. (A5) but applies to
a scalar function (sometimes called a pseudo-pressure) that is not the real pressure.
Temam (1991) refers to this scalar as, “. . . a technical quantity, a mathematical auxil-
iary . . . ” and advocates that it should not even be considered as an approximation of10

the pressure. Interestingly, in the context of implicit treatments, the homogeneous Neu-
mann condition on the pseudo-pressure has sometimes been implicated as corrupting
solution accuracy through the development of spurious numerical boundary layers ad-
jacent to solid boundaries (Gresho, 1990; Guermond et al., 2006; Hosseini and Feng,
2011).15

Acknowledgements. This research was supported by the National Science Foundation under
Grant AGS-1359698. Discussions with Chiel van Heerwaarden, Juan Pedro Mellado, and Inanc
Senocak are gratefully acknowledged.

References

Armfield, S. and Street, R.: An analysis and comparison of the time accuracy of fractional-step20

methods for the Navier–Stokes equations on staggered grids, Int. J. Numer. Methods Fluids,
38, 255–282, 2002.

Atkinson, B.: Meso-Scale Atmospheric Circulations, Academic Press, 495 pp., 1981.
Axelsen, S. L., Shapiro, A., and Fedorovich, E.: Analytical solution for katabatic flow induced by

an isolated cold strip, Environ. Fluid Mech., 10, 387–414, 2010.25

Briggs, G. A.: Surface inhomogeneity effects on convective diffusion, Bound.-Lay. Meteorol.,
45, 117–135, 1988.

2865

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/2847/2015/gmdd-8-2847-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/2847/2015/gmdd-8-2847-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 2847–2873, 2015

An analytical
verification test for

numerically
simulated convective

flow

A. Shapiro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Chorin, A. J.: Numerical solution of the Navier–Stokes equations, Math. Comput., 22, 745–762,
1968.

Fedorovich, E. and Shapiro, A.: Structure of numerically simulated katabatic and anabatic flows
along steep slopes, Acta Geophys., 57, 981–1010, 2009a.

Fedorovich, E. and Shapiro, A.: Turbulent natural convection along a vertical plate immersed in5

a stably stratified fluid, J. Fluid Mech., 636, 41–57, 2009b.
Fedorovich, E., Nieuwstadt, F. T. M., and Kaiser, R.: Numerical and laboratory study of a hor-

izontally evolving convective boundary layer. Part I: Transition regimes and development of
the mixed layer, J. Atmos. Sci., 58, 70–86, 2001.

Gresho, P. M.: On the theory of semi-implicit projection methods for viscous incompressible flow10

and its implementation via a finite element method that also introduces a nearly consistent
mass matrix. Part 1: Theory, Int. J. Numer. Methods Fluids, 11, 587–620, 1990.

Gresho, P. M. and Sani, R. L.: On pressure boundary conditions for the incompressible Navier–
Stokes equations, Int. J. Numer. Methods Fluids, 7, 1111–1145, 1987.

Guermond, J. L., Minev, P., and Shen, J.: An overview of projection methods for incompressible15

flows, Comput. Methods Appl. Mech. Engrg., 195, 6011–6045, 2006.
Hadfield, M. G., Cotton, W. R., and Pielke, R. A.: Large-eddy simulations of thermally forced

circulations in the convective boundary layer. Part I: A small-scale circulation with zero wind,
Bound.-Lay. Meteorol., 57, 79–114, 1991.

Henshaw, W. D.: A fourth-order accurate method for the incompressible Navier–Stokes equa-20

tions on overlapping grids, J. Comput. Phys., 113, 13–25, 1994.
Hosseini, S. M. and Feng, J. J.: Pressure boundary conditions for computing incompressible

flows with SPH, J. Comput. Phys., 230, 7473–7487, 2011.
Kang, S.-L., Lenschow, D., and Sullivan, P.: Effects of mesoscale surface thermal heterogeneity

on low-level horizontal wind speeds, Bound.-Lay. Meteorol., 143, 409–432, 2012.25

Kim, J. and Moin, P.: Application of a fractional-step method to incompressible Navier–Stokes
equations, J. Comput. Phys., 59, 308–323, 1985.

Mahrt, L., Sun, J., Vickers, D., MacPherson, J. I., Pederson, J. R., and Desjardins, R. L.: Ob-
servations of fluxes and inland breezes over a heterogeneous surface, J. Atmos. Sci., 51,
2484–2499, 1994.30

McPherson, R. A.: A review of vegetation-atmosphere interactions and their influences on
mesoscale phenomena, Prog. Phys. Geog., 31, 261–285, 2007.

2866

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/2847/2015/gmdd-8-2847-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/2847/2015/gmdd-8-2847-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 2847–2873, 2015

An analytical
verification test for

numerically
simulated convective

flow

A. Shapiro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Nordström, J., Mattsson, K., and Swanson, C.: Boundary conditions for a divergence free
velocity-pressure formulation of the Navier–Stokes equations, J. Comput. Phys., 225, 874–
890, 2007.

Orszag, S. A., Israeli, M., and Deville, M. O.: Boundary conditions for incompressible flows,
J. Sci. Comput., 1, 75–111, 1986.5

Patton, E. G., Sullivan, P. P., and Moeng, C.-H.: The influence of idealized heterogeneity on
wet and dry planetary boundary layers coupled to the land surface, J. Atmos. Sci., 62, 2078–
2097, 2005.

Petersson, N. A.: Stability of pressure boundary conditions for Stokes and Navier–Stokes equa-
tions, J. Comput. Phys., 172, 40–70, 2001.10

Pielke, R. A.: Influence of the spatial distribution of vegetation and soils on the prediction of
cumulus convective rainfall, Rev. Geophys., 39, 151–177, 2001.

Rempfer, D.: On boundary conditions for incompressible Navier–Stokes problems, Appl. Mech.
Rev., 59, 107–125, 2006.

Segal, M. and Arritt, R. W.: Non-classical mesoscale circulations caused by surface sensible15

heat-flux gradients, B. Am. Meteorol. Soc., 73, 1593–1604, 1992.
Shapiro, A. and Fedorovich, E.: Similarity models for unsteady free convection flows along

a differentially cooled horizontal surface, J. Fluid Mech., 736, 444–463, 2013.
Shapiro, A. and Fedorovich, E.: A boundary-layer scaling for turbulent katabatic flow, Bound.-

Lay. Meteorol., 153, 1–17, 2014.20

Shirokoff, D. and Rosales, R. R.: An efficient method for the incompressible Navier–Stokes
equations on irregular domains with no-slip boundary conditions, high order up to the bound-
ary, J. Comput. Phys., 230, 8619–8646, 2011.

Simpson, J. E.: Sea Breeze and Local Winds, Cambridge University Press, 234 pp., 1994.
Temam, R.: Remark on the pressure boundary condition for the projection method, Theor.25

Comp. Fluid Dyn., 3, 181–184, 1991.
Strikwerda, J. C.: Finite difference methods for the Stokes and Navier–Stokes equations,

SIAM J. Sci. Stat. Comp., 5, 56–68, 1984.
van Heerwaarden, C. C., Mellado, J. P., and de Lozar, A.: Scaling laws for the heterogeneously

heated free convective boundary layer, J. Atmos. Sci., 71, 3975–4000, 2014.30

Vreman, A. W.: The projection method for the incompressible Navier–Stokes equations: the
pressure near a no-slip wall, J. Comput. Phys., 263, 353–374, 2014.

2867

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/8/2847/2015/gmdd-8-2847-2015-print.pdf
http://www.geosci-model-dev-discuss.net/8/2847/2015/gmdd-8-2847-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
8, 2847–2873, 2015

An analytical
verification test for

numerically
simulated convective

flow

A. Shapiro et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

z

x

Figure 1. Schematic of two-dimensional (x, z) thermal convection induced by a surface buoy-
ancy that varies horizontally (x) as a square wave. Red denotes positive surface buoyancy, blue
denotes negative surface buoyancy.
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Figure 2. Vertical cross section of the analytical (A-1) buoyancy b and vertical velocity w fields
from the first test case. Color bar units are ms−2 for b, and ms−1 for w.
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Figure 3. Vertical cross section of u from the first test case. A-1 is the analytical solution. INC-1
is the numerical simulation with inhomogeneous Neumann condition for pressure. HNC-1 is the
numerical simulation with the homogeneous Neumann condition for pressure. Color bar units
are ms−1.
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Figure 4. Vertical cross section of the analytical (A-2) buoyancy b and vertical velocity w fields
from the second test case. Color bar units are ms−2 for b, and ms−1 for w.
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Figure 5. Vertical cross section of u from the second test case. A-2 is the analytical solution.
INC-2 is the numerical simulation with inhomogeneous Neumann condition for pressure. Color
bar units are ms−1.
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Figure 6. Vertical cross section of u from HNC-2, the numerical simulation with homogeneous
Neumann condition for pressure in the second test case. Color bar units are ms−1.
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